Lagged correlation-based deep learning for directional trend change prediction in financial time series
Ben Moews,
J. Michael Herrmann and
Gbenga Ibikunle
Papers from arXiv.org
Abstract:
Trend change prediction in complex systems with a large number of noisy time series is a problem with many applications for real-world phenomena, with stock markets as a notoriously difficult to predict example of such systems. We approach predictions of directional trend changes via complex lagged correlations between them, excluding any information about the target series from the respective inputs to achieve predictions purely based on such correlations with other series. We propose the use of deep neural networks that employ step-wise linear regressions with exponential smoothing in the preparatory feature engineering for this task, with regression slopes as trend strength indicators for a given time interval. We apply this method to historical stock market data from 2011 to 2016 as a use case example of lagged correlations between large numbers of time series that are heavily influenced by externally arising new information as a random factor. The results demonstrate the viability of the proposed approach, with state-of-the-art accuracies and accounting for the statistical significance of the results for additional validation, as well as important implications for modern financial economics.
Date: 2018-11, Revised 2018-11
New Economics Papers: this item is included in nep-big, nep-cmp and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Published in Expert Syst. Appl. 120 (2019) 197-206
Downloads: (external link)
http://arxiv.org/pdf/1811.11287 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1811.11287
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().