Distribution Regression with Sample Selection, with an Application to Wage Decompositions in the UK
Victor Chernozhukov,
Iv\'an Fern\'andez-Val and
Siyi Luo
Papers from arXiv.org
Abstract:
We develop a distribution regression model under endogenous sample selection. This model is a semi-parametric generalization of the Heckman selection model. It accommodates much richer effects of the covariates on outcome distribution and patterns of heterogeneity in the selection process, and allows for drastic departures from the Gaussian error structure, while maintaining the same level tractability as the classical model. The model applies to continuous, discrete and mixed outcomes. We provide identification, estimation, and inference methods, and apply them to obtain wage decomposition for the UK. Here we decompose the difference between the male and female wage distributions into composition, wage structure, selection structure, and selection sorting effects. After controlling for endogenous employment selection, we still find substantial gender wage gap -- ranging from 21% to 40% throughout the (latent) offered wage distribution that is not explained by composition. We also uncover positive sorting for single men and negative sorting for married women that accounts for a substantive fraction of the gender wage gap at the top of the distribution.
Date: 2018-11, Revised 2023-12
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://arxiv.org/pdf/1811.11603 Latest version (application/pdf)
Related works:
Working Paper: Distribution regression with sample selection, with an application to wage decompositions in the UK (2018) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1811.11603
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).