EconPapers    
Economics at your fingertips  
 

Uniqueness for contagious McKean--Vlasov systems in the weak feedback regime

Sean Ledger and Andreas Sojmark

Papers from arXiv.org

Abstract: We present a simple uniqueness argument for a collection of McKean-Vlasov problems that have seen recent interest. Our first result shows that, in the weak feedback regime, there is global uniqueness for a very general class of random drivers. By weak feedback we mean the case where the contagion parameters are small enough to prevent blow-ups in solutions. Next, we specialise to a Brownian driver and show how the same techniques can be extended to give short-time uniqueness after blow-ups, regardless of the feedback strength. The heart of our approach is a surprisingly simple probabilistic comparison argument that is robust in the sense that it does not ask for any regularity of the solutions.

Date: 2018-11, Revised 2019-10
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/1811.12356 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1811.12356

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1811.12356