Economics at your fingertips  

A supreme test for periodic explosive GARCH

Stefan Richter, Weining Wang and Wei Biao Wu

Papers from

Abstract: We develop a uniform test for detecting and dating explosive behavior of a strictly stationary GARCH$(r,s)$ (generalized autoregressive conditional heteroskedasticity) process. Namely, we test the null hypothesis of a globally stable GARCH process with constant parameters against an alternative where there is an 'abnormal' period with changed parameter values. During this period, the change may lead to an explosive behavior of the volatility process. It is assumed that both the magnitude and the timing of the breaks are unknown. We develop a double supreme test for the existence of a break, and then provide an algorithm to identify the period of change. Our theoretical results hold under mild moment assumptions on the innovations of the GARCH process. Technically, the existing properties for the QMLE in the GARCH model need to be reinvestigated to hold uniformly over all possible periods of change. The key results involve a uniform weak Bahadur representation for the estimated parameters, which leads to weak convergence of the test statistic to the supreme of a Gaussian Process. In simulations we show that the test has good size and power for reasonably large time series lengths. We apply the test to Apple asset returns and Bitcoin returns.

New Economics Papers: this item is included in nep-ecm, nep-ets and nep-pay
Date: 2018-12
References: View references in EconPapers View complete reference list from CitEc
Citations Track citations by RSS feed

Downloads: (external link) Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this paper

More papers in Papers from
Bibliographic data for series maintained by arXiv administrators ().

Page updated 2019-01-10
Handle: RePEc:arx:papers:1812.03475