Calibrating rough volatility models: a convolutional neural network approach
Henry Stone
Papers from arXiv.org
Abstract:
In this paper we use convolutional neural networks to find the H\"older exponent of simulated sample paths of the rBergomi model, a recently proposed stock price model used in mathematical finance. We contextualise this as a calibration problem, thereby providing a very practical and useful application.
Date: 2018-12, Revised 2019-07
New Economics Papers: this item is included in nep-big, nep-cmp and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://arxiv.org/pdf/1812.05315 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1812.05315
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().