EconPapers    
Economics at your fingertips  
 

Deep neural networks algorithms for stochastic control problems on finite horizon: numerical applications

Achref Bachouch, C\^ome Hur\'e, Nicolas Langren\'e and Huyen Pham

Papers from arXiv.org

Abstract: This paper presents several numerical applications of deep learning-based algorithms that have been introduced in [HPBL18]. Numerical and comparative tests using TensorFlow illustrate the performance of our different algorithms, namely control learning by performance iteration (algorithms NNcontPI and ClassifPI), control learning by hybrid iteration (algorithms Hybrid-Now and Hybrid-LaterQ), on the 100-dimensional nonlinear PDEs examples from [EHJ17] and on quadratic backward stochastic differential equations as in [CR16]. We also performed tests on low-dimension control problems such as an option hedging problem in finance, as well as energy storage problems arising in the valuation of gas storage and in microgrid management. Numerical results and comparisons to quantization-type algorithms Qknn, as an efficient algorithm to numerically solve low-dimensional control problems, are also provided; and some corresponding codes are available on https://github.com/comeh/.

Date: 2018-12, Revised 2020-01
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Published in Methodology and Computing in Applied Probability 24(1) 143-178 (2022)

Downloads: (external link)
http://arxiv.org/pdf/1812.05916 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1812.05916

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1812.05916