Robust Tests for Convergence Clubs
Luisa Corrado,
Melvyn Weeks,
Thanasis Stengos and
Ege Yazgan ()
Papers from arXiv.org
Abstract:
In many applications common in testing for convergence the number of cross-sectional units is large and the number of time periods are few. In these situations asymptotic tests based on an omnibus null hypothesis are characterised by a number of problems. In this paper we propose a multiple pairwise comparisons method based on an a recursive bootstrap to test for convergence with no prior information on the composition of convergence clubs. Monte Carlo simulations suggest that our bootstrap-based test performs well to correctly identify convergence clubs when compared with other similar tests that rely on asymptotic arguments. Across a potentially large number of regions, using both cross-country and regional data for the European Union, we find that the size distortion which afflicts standard tests and results in a bias towards finding less convergence, is ameliorated when we utilise our bootstrap test.
Date: 2018-12
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1812.09518 Latest version (application/pdf)
Related works:
Working Paper: Robust Tests for Convergence Clubs (2019) 
Working Paper: Robust Tests for Convergence Clubs (2018) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1812.09518
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().