Adapted Wasserstein Distances and Stability in Mathematical Finance
Julio Backhoff-Veraguas,
Daniel Bartl,
Mathias Beiglb\"ock and
Manu Eder
Papers from arXiv.org
Abstract:
Assume that an agent models a financial asset through a measure Q with the goal to price / hedge some derivative or optimize some expected utility. Even if the model Q is chosen in the most skilful and sophisticated way, she is left with the possibility that Q does not provide an "exact" description of reality. This leads us to the following question: will the hedge still be somewhat meaningful for models in the proximity of Q? If we measure proximity with the usual Wasserstein distance (say), the answer is NO. Models which are similar w.r.t. Wasserstein distance may provide dramatically different information on which to base a hedging strategy. Remarkably, this can be overcome by considering a suitable "adapted" version of the Wasserstein distance which takes the temporal structure of pricing models into account. This adapted Wasserstein distance is most closely related to the nested distance as pioneered by Pflug and Pichler \cite{Pf09,PfPi12,PfPi14}. It allows us to establish Lipschitz properties of hedging strategies for semimartingale models in discrete and continuous time. Notably, these abstract results are sharp already for Brownian motion and European call options.
Date: 2019-01, Revised 2020-05
New Economics Papers: this item is included in nep-rmg and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Published in Finance and Stochastics, 24(3):601-632, 2020
Downloads: (external link)
http://arxiv.org/pdf/1901.07450 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1901.07450
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().