Testing the Order of Multivariate Normal Mixture Models
Hiroyuki Kasahara and
Katsumi Shimotsu
Papers from arXiv.org
Abstract:
Finite mixtures of multivariate normal distributions have been widely used in empirical applications in diverse fields such as statistical genetics and statistical finance. Testing the number of components in multivariate normal mixture models is a long-standing challenge even in the most important case of testing homogeneity. This paper develops likelihood-based tests of the null hypothesis of $M_0$ components against the alternative hypothesis of $M_0 + 1$ components for a general $M_0 \geq 1$. For heteroscedastic normal mixtures, we propose an EM test and derive the asymptotic distribution of the EM test statistic. For homoscedastic normal mixtures, we derive the asymptotic distribution of the likelihood ratio test statistic. We also derive the asymptotic distribution of the likelihood ratio test statistic and EM test statistic under local alternatives and show the validity of parametric bootstrap. The simulations show that the proposed test has good finite sample size and power properties.
Date: 2019-02
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/1902.02920 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1902.02920
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().