The Shapley Taylor Interaction Index
Kedar Dhamdhere,
Ashish Agarwal and
Mukund Sundararajan
Papers from arXiv.org
Abstract:
The attribution problem, that is the problem of attributing a model's prediction to its base features, is well-studied. We extend the notion of attribution to also apply to feature interactions. The Shapley value is a commonly used method to attribute a model's prediction to its base features. We propose a generalization of the Shapley value called Shapley-Taylor index that attributes the model's prediction to interactions of subsets of features up to some size k. The method is analogous to how the truncated Taylor Series decomposes the function value at a certain point using its derivatives at a different point. In fact, we show that the Shapley Taylor index is equal to the Taylor Series of the multilinear extension of the set-theoretic behavior of the model. We axiomatize this method using the standard Shapley axioms -- linearity, dummy, symmetry and efficiency -- and an additional axiom that we call the interaction distribution axiom. This new axiom explicitly characterizes how interactions are distributed for a class of functions that model pure interaction. We contrast the Shapley-Taylor index against the previously proposed Shapley Interaction index (cf. [9]) from the cooperative game theory literature. We also apply the Shapley Taylor index to three models and identify interesting qualitative insights.
Date: 2019-02, Revised 2020-02
New Economics Papers: this item is included in nep-gth
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1902.05622 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1902.05622
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().