Experimenting in Equilibrium
Stefan Wager and
Kuang Xu
Papers from arXiv.org
Abstract:
Classical approaches to experimental design assume that intervening on one unit does not affect other units. There are many important settings, however, where this non-interference assumption does not hold, as when running experiments on supply-side incentives on a ride-sharing platform or subsidies in an energy marketplace. In this paper, we introduce a new approach to experimental design in large-scale stochastic systems with considerable cross-unit interference, under an assumption that the interference is structured enough that it can be captured via mean-field modeling. Our approach enables us to accurately estimate the effect of small changes to system parameters by combining unobstrusive randomization with lightweight modeling, all while remaining in equilibrium. We can then use these estimates to optimize the system by gradient descent. Concretely, we focus on the problem of a platform that seeks to optimize supply-side payments p in a centralized marketplace where different suppliers interact via their effects on the overall supply-demand equilibrium, and show that our approach enables the platform to optimize p in large systems using vanishingly small perturbations.
Date: 2019-03, Revised 2020-06
New Economics Papers: this item is included in nep-exp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1903.02124 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1903.02124
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().