Kernel Based Estimation of Spectral Risk Measures
Suparna Biswas and
Rituparna Sen
Papers from arXiv.org
Abstract:
Spectral risk measures (SRMs) belong to the family of coherent risk measures. A natural estimator for the class of SRMs has the form of L-statistics. Various authors have studied and derived the asymptotic properties of the empirical estimator of SRM. We propose a kernel based estimator of SRM. We investigate the large sample properties of general L-statistics based on i.i.d and dependent observations and apply them to our estimator. We prove that it is strongly consistent and asymptotically normal. We compare the finite sample performance of our proposed kernel estimator with that of several existing estimators for different SRMs using Monte Carlo simulation. We observe that our proposed kernel estimator outperforms all the estimators. Based on our simulation study we have estimated the exponential SRM of four future indices-that is Nikkei 225, Dax, FTSE 100, and Hang Seng. We also discuss the use of SRM in setting initial margin requirements of clearinghouses. Finally we perform a backtesting exercise of SRM.
Date: 2019-03, Revised 2023-12
New Economics Papers: this item is included in nep-ecm and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1903.03304 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1903.03304
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().