EconPapers    
Economics at your fingertips  
 

Affine term structure models: a time-changed approach with perfect fit to market curves

Cheikh Mbaye and Fr\'ed\'eric Vrins

Papers from arXiv.org

Abstract: We address the so-called calibration problem which consists of fitting in a tractable way a given model to a specified term structure like, e.g., yield or default probability curves. Time-homogeneous jump-diffusions like Vasicek or Cox-Ingersoll-Ross (possibly coupled with compounded Poisson jumps, JCIR), are tractable processes but have limited flexibility; they fail to replicate actual market curves. The deterministic shift extension of the latter (Hull-White or JCIR++) is a simple but yet efficient solution that is widely used by both academics and practitioners. However, the shift approach is often not appropriate when positivity is required, which is a common constraint when dealing with credit spreads or default intensities. In this paper, we tackle this problem by adopting a time change approach. On the top of providing an elegant solution to the calibration problem under positivity constraint, our model features additional interesting properties in terms of implied volatilities. It is compared to the shift extension on various credit risk applications such as credit default swap, credit default swaption and credit valuation adjustment under wrong-way risk. The time change approach is able to generate much larger volatility and covariance effects under the positivity constraint. Our model offers an appealing alternative to the shift in such cases.

New Economics Papers: this item is included in nep-rmg
Date: 2019-03, Revised 2019-03
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
http://arxiv.org/pdf/1903.04211 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1903.04211

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2019-12-10
Handle: RePEc:arx:papers:1903.04211