EconPapers    
Economics at your fingertips  
 

Machine Learning Methods Economists Should Know About

Susan Athey and Guido Imbens

Papers from arXiv.org

Abstract: We discuss the relevance of the recent Machine Learning (ML) literature for economics and econometrics. First we discuss the differences in goals, methods and settings between the ML literature and the traditional econometrics and statistics literatures. Then we discuss some specific methods from the machine learning literature that we view as important for empirical researchers in economics. These include supervised learning methods for regression and classification, unsupervised learning methods, as well as matrix completion methods. Finally, we highlight newly developed methods at the intersection of ML and econometrics, methods that typically perform better than either off-the-shelf ML or more traditional econometric methods when applied to particular classes of problems, problems that include causal inference for average treatment effects, optimal policy estimation, and estimation of the counterfactual effect of price changes in consumer choice models.

New Economics Papers: this item is included in nep-big, nep-cmp, nep-ecm, nep-hpe and nep-pay
Date: 2019-03
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
http://arxiv.org/pdf/1903.10075 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1903.10075

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2019-05-18
Handle: RePEc:arx:papers:1903.10075