Variance Reduction Applied to Machine Learning for Pricing Bermudan/American Options in High Dimension
Ludovic Gouden\`ege,
Andrea Molent and
Antonino Zanette
Papers from arXiv.org
Abstract:
In this paper we propose an efficient method to compute the price of multi-asset American options, based on Machine Learning, Monte Carlo simulations and variance reduction technique. Specifically, the options we consider are written on a basket of assets, each of them following a Black-Scholes dynamics. In the wake of Ludkovski's approach (2018), we implement here a backward dynamic programming algorithm which considers a finite number of uniformly distributed exercise dates. On these dates, the option value is computed as the maximum between the exercise value and the continuation value, which is obtained by means of Gaussian process regression technique and Monte Carlo simulations. Such a method performs well for low dimension baskets but it is not accurate for very high dimension baskets. In order to improve the dimension range, we employ the European option price as a control variate, which allows us to treat very large baskets and moreover to reduce the variance of price estimators. Numerical tests show that the proposed algorithm is fast and reliable, and it can handle also American options on very large baskets of assets, overcoming the problem of the curse of dimensionality.
Date: 2019-03, Revised 2019-12
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://arxiv.org/pdf/1903.11275 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1903.11275
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().