Time series models for realized covariance matrices based on the matrix-F distribution
Jiayuan Zhou,
Feiyu Jiang,
Ke Zhu () and
Wai Keung Li
Papers from arXiv.org
Abstract:
We propose a new Conditional BEKK matrix-F (CBF) model for the time-varying realized covariance (RCOV) matrices. This CBF model is capable of capturing heavy-tailed RCOV, which is an important stylized fact but could not be handled adequately by the Wishart-based models. To further mimic the long memory feature of the RCOV, a special CBF model with the conditional heterogeneous autoregressive (HAR) structure is introduced. Moreover, we give a systematical study on the probabilistic properties and statistical inferences of the CBF model, including exploring its stationarity, establishing the asymptotics of its maximum likelihood estimator, and giving some new inner-product-based tests for its model checking. In order to handle a large dimensional RCOV matrix, we construct two reduced CBF models -- the variance-target CBF model (for moderate but fixed dimensional RCOV matrix) and the factor CBF model (for high dimensional RCOV matrix). For both reduced models, the asymptotic theory of the estimated parameters is derived. The importance of our entire methodology is illustrated by simulation results and two real examples.
Date: 2019-03, Revised 2020-07
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1903.12077 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1903.12077
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().