Simple subvector inference on sharp identified set in affine models
Bulat Gafarov
Papers from arXiv.org
Abstract:
This paper studies a regularized support function estimator for bounds on components of the parameter vector in the case in which the identified set is a polygon. The proposed regularized estimator has three important properties: (i) it has a uniform asymptotic Gaussian limit in the presence of flat faces in the absence of redundant (or overidentifying) constraints (or vice versa); (ii) the bias from regularization does not enter the first-order limiting distribution; (iii) the estimator remains consistent for sharp (non-enlarged) identified set for the individual components even in the non-regualar case. These properties are used to construct \emph{uniformly valid} confidence sets for an element $\theta_{1}$ of a parameter vector $\theta\in\mathbb{R}^{d}$ that is partially identified by affine moment equality and inequality conditions. The proposed confidence sets can be computed as a solution to a small number of linear and convex quadratic programs, leading to a substantial decrease in computation time and guarantees a global optimum. As a result, the method provides a uniformly valid inference in applications in which the dimension of the parameter space, $d$, and the number of inequalities, $k$, were previously computationally unfeasible ($d,k=100$). The proposed approach can be extended to construct confidence sets for intersection bounds, to construct joint polygon-shaped confidence sets for multiple components of $\theta$, and to find the set of solutions to a linear program. Inference for coefficients in the linear IV regression model with an interval outcome is used as an illustrative example.
Date: 2019-03, Revised 2024-07
New Economics Papers: this item is included in nep-ecm and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/1904.00111 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1904.00111
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).