Enhancing Time Series Momentum Strategies Using Deep Neural Networks
Bryan Lim,
Stefan Zohren and
Stephen Roberts
Papers from arXiv.org
Abstract:
While time series momentum is a well-studied phenomenon in finance, common strategies require the explicit definition of both a trend estimator and a position sizing rule. In this paper, we introduce Deep Momentum Networks -- a hybrid approach which injects deep learning based trading rules into the volatility scaling framework of time series momentum. The model also simultaneously learns both trend estimation and position sizing in a data-driven manner, with networks directly trained by optimising the Sharpe ratio of the signal. Backtesting on a portfolio of 88 continuous futures contracts, we demonstrate that the Sharpe-optimised LSTM improved traditional methods by more than two times in the absence of transactions costs, and continue outperforming when considering transaction costs up to 2-3 basis points. To account for more illiquid assets, we also propose a turnover regularisation term which trains the network to factor in costs at run-time.
Date: 2019-04, Revised 2020-09
New Economics Papers: this item is included in nep-big, nep-cmp and nep-pay
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Published in The Journal of Financial Data Science, Fall 2019
Downloads: (external link)
http://arxiv.org/pdf/1904.04912 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1904.04912
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().