Deep-learning based numerical BSDE method for barrier options
Bing Yu,
Xiaojing Xing and
Agus Sudjianto
Papers from arXiv.org
Abstract:
As is known, an option price is a solution to a certain partial differential equation (PDE) with terminal conditions (payoff functions). There is a close association between the solution of PDE and the solution of a backward stochastic differential equation (BSDE). We can either solve the PDE to obtain option prices or solve its associated BSDE. Recently a deep learning technique has been applied to solve option prices using the BSDE approach. In this approach, deep learning is used to learn some deterministic functions, which are used in solving the BSDE with terminal conditions. In this paper, we extend the deep-learning technique to solve a PDE with both terminal and boundary conditions. In particular, we will employ the technique to solve barrier options using Brownian motion bridges.
Date: 2019-04
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1904.05921 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1904.05921
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().