On the construction of confidence intervals for ratios of expectations
Alexis Derumigny,
Lucas Girard and
Yannick Guyonvarch
Papers from arXiv.org
Abstract:
In econometrics, many parameters of interest can be written as ratios of expectations. The main approach to construct confidence intervals for such parameters is the delta method. However, this asymptotic procedure yields intervals that may not be relevant for small sample sizes or, more generally, in a sequence-of-model framework that allows the expectation in the denominator to decrease to $0$ with the sample size. In this setting, we prove a generalization of the delta method for ratios of expectations and the consistency of the nonparametric percentile bootstrap. We also investigate finite-sample inference and show a partial impossibility result: nonasymptotic uniform confidence intervals can be built for ratios of expectations but not at every level. Based on this, we propose an easy-to-compute index to appraise the reliability of the intervals based on the delta method. Simulations and an application illustrate our results and the practical usefulness of our rule of thumb.
Date: 2019-04
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1904.07111 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1904.07111
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().