A Uniform Bound on the Operator Norm of Sub-Gaussian Random Matrices and Its Applications
Grigory Franguridi and
Hyungsik Moon (moonr@usc.edu)
Papers from arXiv.org
Abstract:
For an $N \times T$ random matrix $X(\beta)$ with weakly dependent uniformly sub-Gaussian entries $x_{it}(\beta)$ that may depend on a possibly infinite-dimensional parameter $\beta\in \mathbf{B}$, we obtain a uniform bound on its operator norm of the form $\mathbb{E} \sup_{\beta \in \mathbf{B}} ||X(\beta)|| \leq CK \left(\sqrt{\max(N,T)} + \gamma_2(\mathbf{B},d_\mathbf{B})\right)$, where $C$ is an absolute constant, $K$ controls the tail behavior of (the increments of) $x_{it}(\cdot)$, and $\gamma_2(\mathbf{B},d_\mathbf{B})$ is Talagrand's functional, a measure of multi-scale complexity of the metric space $(\mathbf{B},d_\mathbf{B})$. We illustrate how this result may be used for estimation that seeks to minimize the operator norm of moment conditions as well as for estimation of the maximal number of factors with functional data.
Date: 2019-05, Revised 2021-04
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1905.01096 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1905.01096
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).