EconPapers    
Economics at your fingertips  
 

A Stock Selection Method Based on Earning Yield Forecast Using Sequence Prediction Models

Jessie Sun

Papers from arXiv.org

Abstract: Long-term investors, different from short-term traders, focus on examining the underlying forces that affect the well-being of a company. They rely on fundamental analysis which attempts to measure the intrinsic value an equity. Quantitative investment researchers have identified some value factors to determine the cost of investment for a stock and compare different stocks. This paper proposes using sequence prediction models to forecast a value factor-the earning yield (EBIT/EV) of a company for stock selection. Two advanced sequence prediction models-Long Short-term Memory (LSTM) and Gated Recurrent Unit (GRU) networks are studied. These two models can overcome the inherent problems of a standard Recurrent Neural Network, i.e., vanishing and exploding gradients. This paper firstly introduces the theories of the networks. And then elaborates the workflow of stock pool creation, feature selection, data structuring, model setup and model evaluation. The LSTM and GRU models demonstrate superior performance of forecast accuracy over a traditional Feedforward Neural Network model. The GRU model slightly outperformed the LSTM model.

Date: 2019-05
New Economics Papers: this item is included in nep-bec, nep-big, nep-fmk, nep-for and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/1905.04842 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1905.04842

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1905.04842