mRSC: Multi-dimensional Robust Synthetic Control
Muhummad Amjad,
Vishal Misra,
Devavrat Shah and
Dennis Shen
Papers from arXiv.org
Abstract:
When evaluating the impact of a policy on a metric of interest, it may not be possible to conduct a randomized control trial. In settings where only observational data is available, Synthetic Control (SC) methods provide a popular data-driven approach to estimate a "synthetic" control by combining measurements of "similar" units (donors). Recently, Robust SC (RSC) was proposed as a generalization of SC to overcome the challenges of missing data high levels of noise, while removing the reliance on domain knowledge for selecting donors. However, SC, RSC, and their variants, suffer from poor estimation when the pre-intervention period is too short. As the main contribution, we propose a generalization of unidimensional RSC to multi-dimensional RSC, mRSC. Our proposed mechanism incorporates multiple metrics to estimate a synthetic control, thus overcoming the challenge of poor inference from limited pre-intervention data. We show that the mRSC algorithm with $K$ metrics leads to a consistent estimator of the synthetic control for the target unit under any metric. Our finite-sample analysis suggests that the prediction error decays to zero at a rate faster than the RSC algorithm by a factor of $K$ and $\sqrt{K}$ for the training and testing periods (pre- and post-intervention), respectively. Additionally, we provide a diagnostic test that evaluates the utility of including additional metrics. Moreover, we introduce a mechanism to validate the performance of mRSC: time series prediction. That is, we propose a method to predict the future evolution of a time series based on limited data when the notion of time is relative and not absolute, i.e., we have access to a donor pool that has undergone the desired future evolution. Finally, we conduct experimentation to establish the efficacy of mRSC on synthetic data and two real-world case studies (retail and Cricket).
Date: 2019-05, Revised 2019-09
New Economics Papers: this item is included in nep-bec and nep-ecm
References: Add references at CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://arxiv.org/pdf/1905.06400 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1905.06400
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().