EconPapers    
Economics at your fingertips  
 

Conformal Prediction Interval Estimations with an Application to Day-Ahead and Intraday Power Markets

Christopher Kath and Florian Ziel

Papers from arXiv.org

Abstract: We discuss a concept denoted as Conformal Prediction (CP) in this paper. While initially stemming from the world of machine learning, it was never applied or analyzed in the context of short-term electricity price forecasting. Therefore, we elaborate the aspects that render Conformal Prediction worthwhile to know and explain why its simple yet very efficient idea has worked in other fields of application and why its characteristics are promising for short-term power applications as well. We compare its performance with different state-of-the-art electricity price forecasting models such as quantile regression averaging (QRA) in an empirical out-of-sample study for three short-term electricity time series. We combine Conformal Prediction with various underlying point forecast models to demonstrate its versatility and behavior under changing conditions. Our findings suggest that Conformal Prediction yields sharp and reliable prediction intervals in short-term power markets. We further inspect the effect each of Conformal Prediction's model components has and provide a path-based guideline on how to find the best CP model for each market.

Date: 2019-05, Revised 2020-09
New Economics Papers: this item is included in nep-big, nep-cmp, nep-ene, nep-for and nep-pay
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/1905.07886 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1905.07886

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1905.07886