EconPapers    
Economics at your fingertips  
 

Predicting and Forecasting the Price of Constituents and Index of Cryptocurrency Using Machine Learning

Reaz Chowdhury, Arifur Rahman (mdarifur.rahman@northsouth.edu), M. Sohel Rahman and M. R. C. Mahdy

Papers from arXiv.org

Abstract: At present, cryptocurrencies have become a global phenomenon in financial sectors as it is one of the most traded financial instruments worldwide. Cryptocurrency is not only one of the most complicated and abstruse fields among financial instruments, but it is also deemed as a perplexing problem in finance due to its high volatility. This paper makes an attempt to apply machine learning techniques on the index and constituents of cryptocurrency with a goal to predict and forecast prices thereof. In particular, the purpose of this paper is to predict and forecast the close (closing) price of the cryptocurrency index 30 and nine constituents of cryptocurrencies using machine learning algorithms and models so that, it becomes easier for people to trade these currencies. We have used several machine learning techniques and algorithms and compared the models with each other to get the best output. We believe that our work will help reduce the challenges and difficulties faced by people, who invest in cryptocurrencies. Moreover, the obtained results can play a major role in cryptocurrency portfolio management and in observing the fluctuations in the prices of constituents of cryptocurrency market. We have also compared our approach with similar state of the art works from the literature, where machine learning approaches are considered for predicting and forecasting the prices of these currencies. In the sequel, we have found that our best approach presents better and competitive results than the best works from the literature thereby advancing the state of the art. Using such prediction and forecasting methods, people can easily understand the trend and it would be even easier for them to trade in a difficult and challenging financial instrument like cryptocurrency.

Date: 2019-05
New Economics Papers: this item is included in nep-big, nep-cmp, nep-fmk, nep-for and nep-pay
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/1905.08444 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1905.08444

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1905.08444