Cross-sectional Learning of Extremal Dependence among Financial Assets
Xing Yan,
Qi Wu and
Wen Zhang
Papers from arXiv.org
Abstract:
We propose a novel probabilistic model to facilitate the learning of multivariate tail dependence of multiple financial assets. Our method allows one to construct from known random vectors, e.g., standard normal, sophisticated joint heavy-tailed random vectors featuring not only distinct marginal tail heaviness, but also flexible tail dependence structure. The novelty lies in that pairwise tail dependence between any two dimensions is modeled separately from their correlation, and can vary respectively according to its own parameter rather than the correlation parameter, which is an essential advantage over many commonly used methods such as multivariate $t$ or elliptical distribution. It is also intuitive to interpret, easy to track, and simple to sample comparing to the copula approach. We show its flexible tail dependence structure through simulation. Coupled with a GARCH model to eliminate serial dependence of each individual asset return series, we use this novel method to model and forecast multivariate conditional distribution of stock returns, and obtain notable performance improvements in multi-dimensional coverage tests. Besides, our empirical finding about the asymmetry of tails of the idiosyncratic component as well as the market component is interesting and worth to be well studied in the future.
Date: 2019-05, Revised 2019-10
New Economics Papers: this item is included in nep-ecm and nep-rmg
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Published in Advances in Neural Information Processing Systems, pages 3852-3862, 2019
Downloads: (external link)
http://arxiv.org/pdf/1905.13425 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1905.13425
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().