The route to chaos in routing games: When is Price of Anarchy too optimistic?
Thiparat Chotibut,
Fryderyk Falniowski,
Micha{\l} Misiurewicz and
Georgios Piliouras
Papers from arXiv.org
Abstract:
Routing games are amongst the most studied classes of games. Their two most well-known properties are that learning dynamics converge to equilibria and that all equilibria are approximately optimal. In this work, we perform a stress test for these classic results by studying the ubiquitous dynamics, Multiplicative Weights Update, in different classes of congestion games, uncovering intricate non-equilibrium phenomena. As the system demand increases, the learning dynamics go through period-doubling bifurcations, leading to instabilities, chaos and large inefficiencies even in the simplest case of non-atomic routing games with two paths of linear cost where the Price of Anarchy is equal to one. Starting with this simple class, we show that every system has a carrying capacity, above which it becomes unstable. If the equilibrium flow is a symmetric $50-50\%$ split, the system exhibits one period-doubling bifurcation. A single periodic attractor of period two replaces the attracting fixed point. Although the Price of Anarchy is equal to one, in the large population limit the time-average social cost for all but a zero measure set of initial conditions converges to its worst possible value. For asymmetric equilibrium flows, increasing the demand eventually forces the system into Li-Yorke chaos with positive topological entropy and periodic orbits of all possible periods. Remarkably, in all non-equilibrating regimes, the time-average flows on the paths converge exactly to the equilibrium flows, a property akin to no-regret learning in zero-sum games. These results are robust. We extend them to routing games with arbitrarily many strategies, polynomial cost functions, non-atomic as well as atomic routing games and heteregenous users. Our results are also applicable to any sequence of shrinking learning rates, e.g., $1/\sqrt{T}$, by allowing for a dynamically increasing population size.
Date: 2019-06, Revised 2019-11
New Economics Papers: this item is included in nep-gth
References: Add references at CitEc
Citations:
Published in Advances in Neural Information Processing Systems, Vol 33, p.766-777, 2020
Downloads: (external link)
http://arxiv.org/pdf/1906.02486 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1906.02486
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().