EconPapers    
Economics at your fingertips  
 

lpdensity: Local Polynomial Density Estimation and Inference

Matias Cattaneo (), Michael Jansson () and Xinwei Ma

Papers from arXiv.org

Abstract: Density estimation and inference methods are widely used in empirical work. When the underlying distribution has compact support, conventional kernel-based density estimators are no longer consistent near or at the boundary because of their well-known boundary bias. Alternative smoothing methods are available to handle boundary points in density estimation, but they all require additional tuning parameter choices or other typically ad hoc modifications depending on the evaluation point and/or approach considered. This article discusses the R and Stata package lpdensity implementing a novel local polynomial density estimator proposed and studied in Cattaneo, Jansson, and Ma (2020, 2021), which is boundary adaptive and involves only one tuning parameter. The methods implemented also cover local polynomial estimation of the cumulative distribution function and density derivatives. In addition to point estimation and graphical procedures, the package offers consistent variance estimators, mean squared error optimal bandwidth selection, robust bias-corrected inference, and confidence bands construction, among other features. A comparison with other density estimation packages available in R using a Monte Carlo experiment is provided.

Date: 2019-06, Revised 2021-02
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3) Track citations by RSS feed

Downloads: (external link)
http://arxiv.org/pdf/1906.06529 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1906.06529

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2022-09-21
Handle: RePEc:arx:papers:1906.06529