Improved Forecasting of Cryptocurrency Price using Social Signals
Maria Glenski,
Tim Weninger and
Svitlana Volkova
Papers from arXiv.org
Abstract:
Social media signals have been successfully used to develop large-scale predictive and anticipatory analytics. For example, forecasting stock market prices and influenza outbreaks. Recently, social data has been explored to forecast price fluctuations of cryptocurrencies, which are a novel disruptive technology with significant political and economic implications. In this paper we leverage and contrast the predictive power of social signals, specifically user behavior and communication patterns, from multiple social platforms GitHub and Reddit to forecast prices for three cyptocurrencies with high developer and community interest - Bitcoin, Ethereum, and Monero. We evaluate the performance of neural network models that rely on long short-term memory units (LSTMs) trained on historical price data and social data against price only LSTMs and baseline autoregressive integrated moving average (ARIMA) models, commonly used to predict stock prices. Our results not only demonstrate that social signals reduce error when forecasting daily coin price, but also show that the language used in comments within the official communities on Reddit (r/Bitcoin, r/Ethereum, and r/Monero) are the best predictors overall. We observe that models are more accurate in forecasting price one day ahead for Bitcoin (4% root mean squared percent error) compared to Ethereum (7%) and Monero (8%).
Date: 2019-07
New Economics Papers: this item is included in nep-big, nep-cmp, nep-fmk, nep-for and nep-pay
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1) Track citations by RSS feed
Downloads: (external link)
http://arxiv.org/pdf/1907.00558 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1907.00558
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().