Algorithms for Competitive Division of Chores
Simina Br\^anzei and
Fedor Sandomirskiy
Papers from arXiv.org
Abstract:
We study the problem of allocating divisible bads (chores) among multiple agents with additive utilities when monetary transfers are not allowed. The competitive rule is known for its remarkable fairness and efficiency properties in the case of goods. This rule was extended to chores in prior work by Bogomolnaia, Moulin, Sandomirskiy, and Yanovskaya (2017). The rule produces Pareto optimal and envy-free allocations for both goods and chores. In the case of goods, the outcome of the competitive rule can be easily computed. Competitive allocations solve the Eisenberg-Gale convex program; hence the outcome is unique and can be approximately found by standard gradient methods. An exact algorithm that runs in polynomial time in the number of agents and goods was given by Orlin (2010). In the case of chores, the competitive rule does not solve any convex optimization problem; instead, competitive allocations correspond to local minima, local maxima, and saddle points of the Nash social welfare on the Pareto frontier of the set of feasible utilities. The Pareto frontier may contain many such points; consequently, the competitive rule's outcome is no longer unique. In this paper, we show that all the outcomes of the competitive rule for chores can be computed in strongly polynomial time if either the number of agents or the number of chores is fixed. The approach is based on a combination of three ideas: all consumption graphs of Pareto optimal allocations can be listed in polynomial time; for a given consumption graph, a candidate for a competitive utility profile can be constructed via an explicit formula; each candidate can be checked for competitiveness, and the allocation can be reconstructed using a maximum flow computation. Our algorithm gives an approximately-fair allocation of indivisible chores by the rounding technique of Barman and Krishnamurthy (2018).
Date: 2019-07, Revised 2023-07
New Economics Papers: this item is included in nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://arxiv.org/pdf/1907.01766 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1907.01766
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).