Artificial Intelligence Alter Egos: Who benefits from Robo-investing?
Catherine D'Hondt,
Rudy De Winne,
Eric Ghysels and
Steve Raymond
Papers from arXiv.org
Abstract:
Artificial intelligence, or AI, enhancements are increasingly shaping our daily lives. Financial decision-making is no exception to this. We introduce the notion of AI Alter Egos, which are shadow robo-investors, and use a unique data set covering brokerage accounts for a large cross-section of investors over a sample from January 2003 to March 2012, which includes the 2008 financial crisis, to assess the benefits of robo-investing. We have detailed investor characteristics and records of all trades. Our data set consists of investors typically targeted for robo-advising. We explore robo-investing strategies commonly used in the industry, including some involving advanced machine learning methods. The man versus machine comparison allows us to shed light on potential benefits the emerging robo-advising industry may provide to certain segments of the population, such as low income and/or high risk averse investors.
Date: 2019-07
New Economics Papers: this item is included in nep-big, nep-cmp and nep-pay
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://arxiv.org/pdf/1907.03370 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1907.03370
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().