Is being `Robust' beneficial?: A perspective from the Indian market
Mohammed Bilal Girach,
Shashank Oberoi and
Siddhartha P. Chakrabarty
Papers from arXiv.org
Abstract:
The problem of data uncertainty has motivated the incorporation of robust optimization in various arenas, beyond the Markowitz portfolio optimization. This work presents the extension of the robust optimization framework for the minimization of downside risk measures, such as Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR). We perform an empirical study of VaR and CVaR frameworks, with respect to their robust counterparts, namely, Worst-Case VaR and Worst-Case CVaR, using the market data as well as the simulated data. After discussing the practical usefulness of the robust optimization approaches from various standpoints, we infer various takeaways. The robust models in the case of VaR and CVaR minimization exhibit superior performance with respect to their base versions in the cases involving higher number of stocks and simulated setup respectively.
Date: 2019-08
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1908.05002 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1908.05002
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().