Testing the Drift-Diffusion Model
Drew Fudenberg,
Whitney Newey,
Philipp Strack (philipp.strack@gmail.com) and
Tomasz Strzalecki
Papers from arXiv.org
Abstract:
The drift diffusion model (DDM) is a model of sequential sampling with diffusion (Brownian) signals, where the decision maker accumulates evidence until the process hits a stopping boundary, and then stops and chooses the alternative that corresponds to that boundary. This model has been widely used in psychology, neuroeconomics, and neuroscience to explain the observed patterns of choice and response times in a range of binary choice decision problems. This paper provides a statistical test for DDM's with general boundaries. We first prove a characterization theorem: we find a condition on choice probabilities that is satisfied if and only if the choice probabilities are generated by some DDM. Moreover, we show that the drift and the boundary are uniquely identified. We then use our condition to nonparametrically estimate the drift and the boundary and construct a test statistic.
Date: 2019-08
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1908.05824 Latest version (application/pdf)
Related works:
Journal Article: Testing the drift-diffusion model (2020) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1908.05824
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).