EconPapers    
Economics at your fingertips  
 

The many Shapley values for model explanation

Mukund Sundararajan and Amir Najmi

Papers from arXiv.org

Abstract: The Shapley value has become a popular method to attribute the prediction of a machine-learning model on an input to its base features. The use of the Shapley value is justified by citing [16] showing that it is the \emph{unique} method that satisfies certain good properties (\emph{axioms}). There are, however, a multiplicity of ways in which the Shapley value is operationalized in the attribution problem. These differ in how they reference the model, the training data, and the explanation context. These give very different results, rendering the uniqueness result meaningless. Furthermore, we find that previously proposed approaches can produce counterintuitive attributions in theory and in practice---for instance, they can assign non-zero attributions to features that are not even referenced by the model. In this paper, we use the axiomatic approach to study the differences between some of the many operationalizations of the Shapley value for attribution, and propose a technique called Baseline Shapley (BShap) that is backed by a proper uniqueness result. We also contrast BShap with Integrated Gradients, another extension of Shapley value to the continuous setting.

Date: 2019-08, Revised 2020-02
New Economics Papers: this item is included in nep-gth
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)

Downloads: (external link)
http://arxiv.org/pdf/1908.08474 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1908.08474

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1908.08474