EconPapers    
Economics at your fingertips  
 

The Ridge Path Estimator for Linear Instrumental Variables

Nandana Sengupta and Fallaw Sowell

Papers from arXiv.org

Abstract: This paper presents the asymptotic behavior of a linear instrumental variables (IV) estimator that uses a ridge regression penalty. The regularization tuning parameter is selected empirically by splitting the observed data into training and test samples. Conditional on the tuning parameter, the training sample creates a path from the IV estimator to a prior. The optimal tuning parameter is the value along this path that minimizes the IV objective function for the test sample. The empirically selected regularization tuning parameter becomes an estimated parameter that jointly converges with the parameters of interest. The asymptotic distribution of the tuning parameter is a nonstandard mixture distribution. Monte Carlo simulations show the asymptotic distribution captures the characteristics of the sampling distributions and when this ridge estimator performs better than two-stage least squares.

Date: 2019-08
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/1908.09237 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1908.09237

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-30
Handle: RePEc:arx:papers:1908.09237