EconPapers    
Economics at your fingertips  
 

Fixed-k Inference for Conditional Extremal Quantiles

Yuya Sasaki and Yulong Wang

Papers from arXiv.org

Abstract: We develop a new extreme value theory for repeated cross-sectional and panel data to construct asymptotically valid confidence intervals (CIs) for conditional extremal quantiles from a fixed number $k$ of nearest-neighbor tail observations. As a by-product, we also construct CIs for extremal quantiles of coefficients in linear random coefficient models. For any fixed $k$, the CIs are uniformly valid without parametric assumptions over a set of nonparametric data generating processes associated with various tail indices. Simulation studies show that our CIs exhibit superior small-sample coverage and length properties than alternative nonparametric methods based on asymptotic normality. Applying the proposed method to Natality Vital Statistics, we study factors of extremely low birth weights. We find that signs of major effects are the same as those found in preceding studies based on parametric models, but with different magnitudes.

Date: 2019-08, Revised 2020-07
New Economics Papers: this item is included in nep-ecm and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/1909.00294 Latest version (application/pdf)

Related works:
Journal Article: Fixed-k Inference for Conditional Extremal Quantiles (2022) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1909.00294

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:1909.00294