Fixed-k Inference for Conditional Extremal Quantiles
Yuya Sasaki and
Yulong Wang
Papers from arXiv.org
Abstract:
We develop a new extreme value theory for repeated cross-sectional and panel data to construct asymptotically valid confidence intervals (CIs) for conditional extremal quantiles from a fixed number $k$ of nearest-neighbor tail observations. As a by-product, we also construct CIs for extremal quantiles of coefficients in linear random coefficient models. For any fixed $k$, the CIs are uniformly valid without parametric assumptions over a set of nonparametric data generating processes associated with various tail indices. Simulation studies show that our CIs exhibit superior small-sample coverage and length properties than alternative nonparametric methods based on asymptotic normality. Applying the proposed method to Natality Vital Statistics, we study factors of extremely low birth weights. We find that signs of major effects are the same as those found in preceding studies based on parametric models, but with different magnitudes.
Date: 2019-08, Revised 2020-07
New Economics Papers: this item is included in nep-ecm and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1909.00294 Latest version (application/pdf)
Related works:
Journal Article: Fixed-k Inference for Conditional Extremal Quantiles (2022) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1909.00294
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().