EconPapers    
Economics at your fingertips  
 

Quantile regression methods for first-price auctions

Nathalie Gimenes and Emmanuel Guerre

Papers from arXiv.org

Abstract: The paper proposes a quantile-regression inference framework for first-price auctions with symmetric risk-neutral bidders under the independent private-value paradigm. It is first shown that a private-value quantile regression generates a quantile regression for the bids. The private-value quantile regression can be easily estimated from the bid quantile regression and its derivative with respect to the quantile level. This also allows to test for various specification or exogeneity null hypothesis using the observed bids in a simple way. A new local polynomial technique is proposed to estimate the latter over the whole quantile level interval. Plug-in estimation of functionals is also considered, as needed for the expected revenue or the case of CRRA risk-averse bidders, which is amenable to our framework. A quantile-regression analysis to USFS timber is found more appropriate than the homogenized-bid methodology and illustrates the contribution of each explanatory variables to the private-value distribution. Linear interactive sieve extensions are proposed and studied in the Appendices.

Date: 2019-09, Revised 2020-09
New Economics Papers: this item is included in nep-des, nep-ecm and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://arxiv.org/pdf/1909.05542 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1909.05542

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1909.05542