Nonparametric Estimation of the Random Coefficients Model: An Elastic Net Approach
Florian Heiss,
Stephan Hetzenecker and
Maximilian Osterhaus
Papers from arXiv.org
Abstract:
This paper investigates and extends the computationally attractive nonparametric random coefficients estimator of Fox, Kim, Ryan, and Bajari (2011). We show that their estimator is a special case of the nonnegative LASSO, explaining its sparse nature observed in many applications. Recognizing this link, we extend the estimator, transforming it to a special case of the nonnegative elastic net. The extension improves the estimator's recovery of the true support and allows for more accurate estimates of the random coefficients' distribution. Our estimator is a generalization of the original estimator and therefore, is guaranteed to have a model fit at least as good as the original one. A theoretical analysis of both estimators' properties shows that, under conditions, our generalized estimator approximates the true distribution more accurately. Two Monte Carlo experiments and an application to a travel mode data set illustrate the improved performance of the generalized estimator.
Date: 2019-09, Revised 2019-09
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1909.08434 Latest version (application/pdf)
Related works:
Working Paper: Nonparametric estimation of the random coefficients model: An elastic net approach (2019) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1909.08434
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().