EconPapers    
Economics at your fingertips  
 

Inference in Nonparametric Series Estimation with Specification Searches for the Number of Series Terms

Byunghoon Kang

Papers from arXiv.org

Abstract: Nonparametric series regression often involves specification search over the tuning parameter, i.e., evaluating estimates and confidence intervals with a different number of series terms. This paper develops pointwise and uniform inferences for conditional mean functions in nonparametric series estimations that are uniform in the number of series terms. As a result, this paper constructs confidence intervals and confidence bands with possibly data-dependent series terms that have valid asymptotic coverage probabilities. This paper also considers a partially linear model setup and develops inference methods for the parametric part uniform in the number of series terms. The finite sample performance of the proposed methods is investigated in various simulation setups as well as in an illustrative example, i.e., the nonparametric estimation of the wage elasticity of the expected labor supply from Blomquist and Newey (2002).

Date: 2019-09, Revised 2020-02
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/1909.12162 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1909.12162

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1909.12162