Data Smashing 2.0: Sequence Likelihood (SL) Divergence For Fast Time Series Comparison
Yi Huang and
Ishanu Chattopadhyay
Papers from arXiv.org
Abstract:
Recognizing subtle historical patterns is central to modeling and forecasting problems in time series analysis. Here we introduce and develop a new approach to quantify deviations in the underlying hidden generators of observed data streams, resulting in a new efficiently computable universal metric for time series. The proposed metric is in the sense that we can compare and contrast data streams regardless of where and how they are generated and without any feature engineering step. The approach proposed in this paper is conceptually distinct from our previous work on data smashing, and vastly improves discrimination performance and computing speed. The core idea here is the generalization of the notion of KL divergence often used to compare probability distributions to a notion of divergence in time series. We call this the sequence likelihood (SL) divergence, which may be used to measure deviations within a well-defined class of discrete-valued stochastic processes. We devise efficient estimators of SL divergence from finite sample paths and subsequently formulate a universal metric useful for computing distance between time series produced by hidden stochastic generators.
Date: 2019-09, Revised 2019-10
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1909.12243 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1909.12243
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).