Principled estimation of regression discontinuity designs
L. Jason Anastasopoulos
Papers from arXiv.org
Abstract:
Regression discontinuity designs are frequently used to estimate the causal effect of election outcomes and policy interventions. In these contexts, treatment effects are typically estimated with covariates included to improve efficiency. While including covariates improves precision asymptotically, in practice, treatment effects are estimated with a small number of observations, resulting in considerable fluctuations in treatment effect magnitude and precision depending upon the covariates chosen. This practice thus incentivizes researchers to select covariates which maximize treatment effect statistical significance rather than precision. Here, I propose a principled approach for estimating RDDs which provides a means of improving precision with covariates while minimizing adverse incentives. This is accomplished by integrating the adaptive LASSO, a machine learning method, into RDD estimation using an R package developed for this purpose, adaptiveRDD. Using simulations, I show that this method significantly improves treatment effect precision, particularly when estimating treatment effects with fewer than 200 observations.
Date: 2019-10, Revised 2020-05
New Economics Papers: this item is included in nep-big, nep-cmp and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1910.06381 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1910.06381
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().