Model Specification Test with Unlabeled Data: Approach from Covariate Shift
Masahiro Kato and
Hikaru Kawarazaki
Papers from arXiv.org
Abstract:
We propose a novel framework of the model specification test in regression using unlabeled test data. In many cases, we have conducted statistical inferences based on the assumption that we can correctly specify a model. However, it is difficult to confirm whether a model is correctly specified. To overcome this problem, existing works have devised statistical tests for model specification. Existing works have defined a correctly specified model in regression as a model with zero conditional mean of the error term over train data only. Extending the definition in conventional statistical tests, we define a correctly specified model as a model with zero conditional mean of the error term over any distribution of the explanatory variable. This definition is a natural consequence of the orthogonality of the explanatory variable and the error term. If a model does not satisfy this condition, the model might lack robustness with regards to the distribution shift. The proposed method would enable us to reject a misspecified model under our definition. By applying the proposed method, we can obtain a model that predicts the label for the unlabeled test data well without losing the interpretability of the model. In experiments, we show how the proposed method works for synthetic and real-world datasets.
Date: 2019-11, Revised 2020-02
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1911.00688 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1911.00688
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().