Quantile Factor Models
Liang Chen,
Juan Dolado and
Jesus Gonzalo
Papers from arXiv.org
Abstract:
Quantile Factor Models (QFM) represent a new class of factor models for high-dimensional panel data. Unlike Approximate Factor Models (AFM), where only location-shifting factors can be extracted, QFM also allow to recover unobserved factors shifting other relevant parts of the distributions of observed variables. A quantile regression approach, labeled Quantile Factor Analysis (QFA), is proposed to consistently estimate all the quantile-dependent factors and loadings. Their asymptotic distribution is then derived using a kernel-smoothed version of the QFA estimators. Two consistent model selection criteria, based on information criteria and rank minimization, are developed to determine the number of factors at each quantile. Moreover, in contrast to the conditions required for the use of Principal Components Analysis in AFM, QFA estimation remains valid even when the idiosyncratic errors have heavy-tailed distributions. Three empirical applications (regarding macroeconomic, climate and finance panel data) provide evidence that extra factors shifting the quantiles other than the means could be relevant in practice.
Date: 2019-11, Revised 2020-09
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://arxiv.org/pdf/1911.02173 Latest version (application/pdf)
Related works:
Journal Article: Quantile Factor Models (2021) 
Working Paper: Quantile Factor Models (2020) 
Working Paper: Quantile Factor Models (2018) 
Working Paper: Quantile Factor Models (2017) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1911.02173
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().