Index Tracking with Cardinality Constraints: A Stochastic Neural Networks Approach
Yu Zheng,
Bowei Chen,
Timothy M. Hospedales and
Yongxin Yang
Papers from arXiv.org
Abstract:
Partial (replication) index tracking is a popular passive investment strategy. It aims to replicate the performance of a given index by constructing a tracking portfolio which contains some constituents of the index. The tracking error optimisation is quadratic and NP-hard when taking the L0 constraint into account so it is usually solved by heuristic methods such as evolutionary algorithms. This paper introduces a simple, efficient and scalable connectionist model as an alternative. We propose a novel reparametrisation method and then solve the optimisation problem with stochastic neural networks. The proposed approach is examined with S&P 500 index data for more than 10 years and compared with widely used index tracking approaches such as forward and backward selection and the largest market capitalisation methods. The empirical results show our model achieves excellent performance. Compared with the benchmarked models, our model has the lowest tracking error, across a range of portfolio sizes. Meanwhile it offers comparable performance to the others on secondary criteria such as volatility, Sharpe ratio and maximum drawdown.
Date: 2019-11, Revised 2019-11
New Economics Papers: this item is included in nep-big, nep-cmp and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1911.05052 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1911.05052
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().