Strongly Budget Balanced Auctions for Multi-Sided Markets
Rica Gonen and
Erel Segal-Halevi
Papers from arXiv.org
Abstract:
In two-sided markets, Myerson and Satterthwaite's impossibility theorem states that one can not maximize the gain-from-trade while also satisfying truthfulness, individual-rationality and no deficit. Attempts have been made to circumvent Myerson and Satterthwaite's result by attaining approximately-maximum gain-from-trade: the double-sided auctions of McAfee (1992) is truthful and has no deficit, and the one by Segal-Halevi et al. (2016) additionally has no surplus --- it is strongly-budget-balanced. They consider two categories of agents --- buyers and sellers, where each trade set is composed of a single buyer and a single seller. The practical complexity of applications such as supply chain require one to look beyond two-sided markets. Common requirements are for: buyers trading with multiple sellers of different or identical items, buyers trading with sellers through transporters and mediators, and sellers trading with multiple buyers. We attempt to address these settings. We generalize Segal-Halevi et al. (2016)'s strongly-budget-balanced double-sided auction setting to a multilateral market where each trade set is composed of any number of agent categories. Our generalization refines the notion of competition in multi-sided auctions by introducing the concepts of external competition and trade reduction. We also show an obviously-truthful implementation of our auction using multiple ascending prices.
Date: 2019-11, Revised 2019-12
New Economics Papers: this item is included in nep-des, nep-gth and nep-mic
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1911.08094 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1911.08094
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().