Equivariant online predictions of non-stationary time series
K\=osaku Takanashi and
Kenichiro McAlinn
Papers from arXiv.org
Abstract:
We discuss the finite sample theoretical properties of online predictions in non-stationary time series under model misspecification. To analyze the theoretical predictive properties of statistical methods under this setting, we first define the Kullback-Leibler risk, in order to place the problem within a decision theoretic framework. Under this framework, we show that a specific class of dynamic models -- random walk dynamic linear models -- produce exact minimax predictive densities. We first show this result under Gaussian assumptions, then relax this assumption using semi-martingale processes. This result provides a theoretical baseline, under both non-stationary and stationary time series data, for which other models can be compared against. We extend the result to the synthesis of multiple predictive densities. Three topical applications in epidemiology, climatology, and economics, confirm and highlight our theoretical results.
Date: 2019-11, Revised 2023-06
New Economics Papers: this item is included in nep-ecm, nep-ets and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://arxiv.org/pdf/1911.08662 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1911.08662
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().