A Scrambled Method of Moments
Jean-Jacques Forneron
Papers from arXiv.org
Abstract:
Quasi-Monte Carlo (qMC) methods are a powerful alternative to classical Monte-Carlo (MC) integration. Under certain conditions, they can approximate the desired integral at a faster rate than the usual Central Limit Theorem, resulting in more accurate estimates. This paper explores these methods in a simulation-based estimation setting with an emphasis on the scramble of Owen (1995). For cross-sections and short-panels, the resulting Scrambled Method of Moments simply replaces the random number generator with the scramble (available in most softwares) to reduce simulation noise. Scrambled Indirect Inference estimation is also considered. For time series, qMC may not apply directly because of a curse of dimensionality on the time dimension. A simple algorithm and a class of moments which circumvent this issue are described. Asymptotic results are given for each algorithm. Monte-Carlo examples illustrate these results in finite samples, including an income process with "lots of heterogeneity."
Date: 2019-11
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1911.09128 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1911.09128
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().