Regression Discontinuity Design under Self-selection
Sida Peng and
Yang Ning
Papers from arXiv.org
Abstract:
In Regression Discontinuity (RD) design, self-selection leads to different distributions of covariates on two sides of the policy intervention, which essentially violates the continuity of potential outcome assumption. The standard RD estimand becomes difficult to interpret due to the existence of some indirect effect, i.e. the effect due to self selection. We show that the direct causal effect of interest can still be recovered under a class of estimands. Specifically, we consider a class of weighted average treatment effects tailored for potentially different target populations. We show that a special case of our estimands can recover the average treatment effect under the conditional independence assumption per Angrist and Rokkanen (2015), and another example is the estimand recently proposed in Fr\"olich and Huber (2018). We propose a set of estimators through a weighted local linear regression framework and prove the consistency and asymptotic normality of the estimators. Our approach can be further extended to the fuzzy RD case. In simulation exercises, we compare the performance of our estimator with the standard RD estimator. Finally, we apply our method to two empirical data sets: the U.S. House elections data in Lee (2008) and a novel data set from Microsoft Bing on Generalized Second Price (GSP) auction.
Date: 2019-11
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1911.09248 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1911.09248
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().