EconPapers    
Economics at your fingertips  
 

Cryptocurrency Price Prediction and Trading Strategies Using Support Vector Machines

David Zhao, Alessandro Rinaldo and Christopher Brookins

Papers from arXiv.org

Abstract: Few assets in financial history have been as notoriously volatile as cryptocurrencies. While the long term outlook for this asset class remains unclear, we are successful in making short term price predictions for several major crypto assets. Using historical data from July 2015 to November 2019, we develop a large number of technical indicators to capture patterns in the cryptocurrency market. We then test various classification methods to forecast short-term future price movements based on these indicators. On both PPV and NPV metrics, our classifiers do well in identifying up and down market moves over the next 1 hour. Beyond evaluating classification accuracy, we also develop a strategy for translating 1-hour-ahead class predictions into trading decisions, along with a backtester that simulates trading in a realistic environment. We find that support vector machines yield the most profitable trading strategies, which outperform the market on average for Bitcoin, Ethereum and Litecoin over the past 22 months, since January 2018.

Date: 2019-11, Revised 2019-11
New Economics Papers: this item is included in nep-pay
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/1911.11819 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1911.11819

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1911.11819