The Microstructure of Stochastic Volatility Models with Self-Exciting Jump Dynamics
Ulrich Horst and
Wei Xu
Papers from arXiv.org
Abstract:
We provide a general probabilistic framework within which we establish scaling limits for a class of continuous-time stochastic volatility models with self-exciting jump dynamics. In the scaling limit, the joint dynamics of asset returns and volatility is driven by independent Gaussian white noises and two independent Poisson random measures that capture the arrival of exogenous shocks and the arrival of self-excited shocks, respectively. Various well-studied stochastic volatility models with and without self-exciting price/volatility co-jumps are obtained as special cases under different scaling regimes. We analyze the impact of external shocks on the market dynamics, especially their impact on jump cascades and show in a mathematically rigorous manner that many small external shocks may tigger endogenous jump cascades in asset returns and stock price volatility.
Date: 2019-11
New Economics Papers: this item is included in nep-ets and nep-mst
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://arxiv.org/pdf/1911.12969 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1911.12969
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().